Tag: #リアルタイム分析
eコマースでのビッグデータの使い方
ビッグデータと分析のアプリケーションは、eコマースビジネスがゲームの一歩先を行くのを助けています。ビッグデータは、組織がより大きな利益を得るためにどの製品、価格、広告がトップであるかを決定するために使用できる多数の事実の集まりです。
analyticsjapan Oct 1, 2019 0 3092
ビッグデータと分析のアプリケーションは、eコマースビジネスがゲームの一歩先を行くのを助けています。ビッグデータは、組織がより大きな利益を得るためにどの製品、価格、広告がトップであるかを決定するために使用できる多数の事実の集まりです。
analyticsjapan Jan 8, 2020 0 29
analyticsjapan Sep 5, 2019 0 25
analyticsjapan May 23, 2024 0 25
analyticsjapan Jul 11, 2019 0 24
analyticsjapan Jan 14, 2020 0 24
analyticsjapan Dec 20, 2019 0 107
analyticsjapan Jan 6, 2020 0 92
Aino Aug 5, 2019 0 91
analyticsjapan Sep 5, 2019 0 90
analyticsjapan Jul 11, 2019 0 89
analyticsjapan Jan 14, 2020 0 1344
analyticsjapan Jul 11, 2019 0 1298
analyticsjapan Dec 20, 2019 0 1239
Aino Jul 29, 2019 0 1239
analyticsjapan Mar 9, 2020 0 1197
analyticsjapan May 21, 2024 0 1323
analyticsjapan Mar 9, 2020 0 6867
analyticsjapan Feb 17, 2020 0 3810
analyticsjapan Feb 5, 2020 0 3776
analyticsjapan Sep 12, 2019 0 3057
消費者は、生活のあらゆる面でパーソナライズされた体験を期待するようになりました。 AIを金融サービスで使用して、顧客をセグメント化し、リテールバンキングのコンバージョンと定着率を高めるパーソナライズされたオファーを推進できます。自動化されたエージェントは、ミレニアル世代を惹きつけるための鍵であり、人と話すことなく顧客が質問に答え、問題を自分で解決するのに役立ちます。不正行為を顧客に自動的に警告し、行動を起こすことで、顧客満足度を高め、解約の可能性を減らすことができます。
analyticsjapan Jul 11, 2019 0 3951
大手物流業者は、業務から発生するデータ解釈のため、分析と研究に長い間頼っていました。
analyticsjapan Jan 24, 2020 0 3767
金融、保険、サプライチェーン、ヘルスケアなど、業界の特定のユースケース向けに独自のブロックチェーン設計を持つことが基本です。バイオメディカルおよびヘルスケアアプリケーションの大半は、プライベートネットワーク上で開発されたブロックチェーンフレームワークが最も受け入れられる参加者として、利害関係者を必要とします。参加のための暗号通貨のようなものでは、それらは推進力を必要としません。いくつかは、ハイパーレジャー、イーサリアムで人気のあるプライベートブロックチェーンの成果です。
analyticsjapan Dec 12, 2019 0 3193
保険業界は常に非常に保守的です。ただし、新しい技術の採用は単なる現代のトレンドではなく、競争のペースを維持するために必要なものです。現代のデジタル時代では、ビッグデータテクノロジーは膨大な量の情報を処理し、ワークフローの効率を高め、運用コス
analyticsjapan Dec 27, 2019 0 2427
ビッグデータは、すべての業界および組織部門、特に人事(HR)業界のゲームチェンジャーとして浮上しています。ビッグデータとHRデータ分析を活用すると、採用、トレーニング、開発、パフォーマンス、報酬など、HRのほぼすべての分野に情報を提供し、改善することができます。ビッグデータを使用することで、HRマネージャーはより賢明な決定を下し、組織がより効率的に目標を達成できるように支援できます。
analyticsjapan Sep 24, 2019 0 2962
価値を高める大きな可能性を得るために、ここ数十年は大量のデジタルデータを目撃しました。たとえば、患者の転帰を改善し、コストを削減するには、すべてのデジタルデータに対する患者の関与を増やすことが重要な要素です。いずれにせよ、中央管理システムと今日普及している従来のデータベースでは、このデータの大部分がサイロ内にロックされており、組織や業界がそれを利用してその潜在的な価値を明らかにする能力が大幅に低下しています。この記事では、ブロックチェーンをデータ中心に見ていきます。ブロックチェーンを使用して、データの安全なターゲット交換を促進し、その可能性を解き放ち、ビジネス価値を実現する方法を説明します。
analyticsjapan Jun 3, 2019 0 4365
保険数理科学が現代の金融理論と現在広く「データ科学」と呼んでいるものの両方に先んじて、データは常に支払人のビジネスモデルの中核をなしてきました。しかし医療では、支払人が直面する質問のセットは他のものよりも広いです分析が主に損失の可能性、損失のコスト、および価格競争力があるが有益な保険料に焦点を当てている保険会社の種類。今日では、有力支払者は保険会社と保険加入者の両方を対象にしており、データ分析は健康への影響に影響を与える能力の不可欠な要素です。
analyticsjapan Aug 8, 2019 0 3648
すべての組織は現在、よりデータ駆動型の試みを行っています。機械学習の手法は、この取り組みに役立ちました。私は、世の中の多くの資料が技術的すぎて理解しにくいことを知っています。この一連の記事では、私の目的はデータサイエンスを簡素化することです。私はスタンフォードの講座、本から手がかりを得ています。この試みは、誰にとってもデータサイエンスを理解しやすくすることです。