analyticsjapan Dec 20, 2019 0 39
analyticsjapan Jul 12, 2019 0 37
Aino Jul 29, 2019 0 37
analyticsjapan Jan 14, 2020 0 34
analyticsjapan Jan 6, 2020 0 33
Aino Jul 29, 2019 0 167
analyticsjapan Jul 12, 2019 0 162
analyticsjapan Dec 20, 2019 0 159
analyticsjapan Jan 14, 2020 0 159
analyticsjapan Jan 6, 2020 0 151
analyticsjapan Jul 11, 2019 0 1309
analyticsjapan Jan 14, 2020 0 1291
analyticsjapan Dec 20, 2019 0 1257
Aino Jul 29, 2019 0 1238
analyticsjapan Mar 9, 2020 0 1189
analyticsjapan May 21, 2024 0 1153
analyticsjapan Mar 9, 2020 0 6638
analyticsjapan Feb 17, 2020 0 3624
analyticsjapan Feb 5, 2020 0 3598
analyticsjapan May 23, 2024 0 1198
このブログでは、デジタルヘルステクノロジーが患者のエンパワーメントを向上させ、医療を変革している方法について探求します。デジタル革命はさまざまな産業に大きな影響を与えており、医療も例外ではありません。デジタルヘルステクノロジーの登場により、患者は今や自身の個人的な健康データをより多くの制御下に置くことができ、これによりエンパワーメントが増し、医療に積極的に参加することができます。...
analyticsjapan Aug 26, 2019 0 2964
AIは企業にとっては流行語ですが、多くの組織はデータドリブン型になるためのデジタルトランスフォーメーションを未だに苦労しています。
analyticsjapan Jul 11, 2019 0 3169
現在(米国では)約80億ドルと評価されている教育テクノロジー:Edtech業界は、近年、投資資本の大量流入の恩恵を受けています。これは、2018年だけでも14億5000万ドルと報告されています。
analyticsjapan Aug 27, 2019 0 3587
慢性疾患と心臓病、脳卒中、がん、2型糖尿病、肥満、関節炎などの慢性疾患は、すべての健康問題の中で最も一般的で、費用がかかり、予防可能なものです。 慢性疾患の発生率の増加に加えて、65歳以上の保健計画対象の人数が増えており、統計的に慢性疾患のリスクが高くなっています。
analyticsjapan Jul 11, 2019 0 4176
ビッグデータはここ数年の間ずっと話題になってきましたが、今日それは実際に使用されているでしょうか。 ビッグデータを適用するための道のりは、かなりの準備段階が必要で手を出せないテクノロジーのように思われますが、適切なツール、チーム、戦略があれば、ビッグデータを活用して市場競争の優位性を目指すことが可能です。...
analyticsjapan Oct 21, 2019 0 2993
ヒューマンバイアスの削減:AIは、人間の直感や知覚ではなくデータに依存しているため、人間の視点が歪曲されて意思決定プロセスが阻害される可能性がなくなります。これにより、組織を差別訴訟から保護することができますが、よりまとまりのある、コミュニケーションのとれる職場を作り出すこともできます。
analyticsjapan Oct 22, 2019 0 3086
AIは、1956年に学問分野として設立されました。それ以来、AI技術はテクノロジー業界の重要な部分となっています。米国、中国、日本、韓国、インドなど、世界のさまざまな地域でさまざまな種類のAI駆動ロボットが開発されています。報告によると、AIへの世界的な投資の3分の2が中国に注がれました。これにより、昨年だけでAI産業が67%成長し、中国は2016年に科学技術大学でJia...
analyticsjapan Dec 20, 2019 0 3917
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Aug 8, 2019 0 3454
すべての組織は現在、よりデータ駆動型の試みを行っています。機械学習の手法は、この取り組みに役立ちました。私は、世の中の多くの資料が技術的すぎて理解しにくいことを知っています。この一連の記事では、私の目的はデータサイエンスを簡素化することです。私はスタンフォードの講座、本から手がかりを得ています。この試みは、誰にとってもデータサイエンスを理解しやすくすることです。
analyticsjapan Jun 3, 2019 0 4392
まだ初期の段階にありましたが、プロバイダー分析は過去10年間で電子カルテ(EHR)の大量採用に伴って始まりました。プロバイダ分析ソリューションは、2つの大きなバケツに分類されます.