Last seen: 6 months ago
このブログでは、デジタルヘルステクノロジーが患者のエンパワーメントを向上させ、医療を変革している方法について探求します。デジタル革命はさまざまな産業に大きな影響を与えており、医療も例外ではありません。デジタルヘルステクノロジーの登場により、患者は今や自身の個人的な健康データをより多くの制御下に置くことができ、これによりエンパワーメントが増し、医療に積極的に参加することができます。...
このブログは、人工知能(AI)が金融部門で果たす変革的な役割について探求します。AIは、顧客サービス、業務効率、セキュリティ、およびデータに基づく意思決定など、金融のさまざまな側面を革新しました。このブログでは、AIの利点がコスト削減、プロセスの効率化、セキュリティ対策の強化、戦略的インサイトのためのデータの活用などに焦点を当てています。世界のAI市場が大きな数字に達し、フィンテック市場が大幅な成長が見込まれる中、AIを取り入れることは、金融機関が競争力を維持し、顧客に優れた体験を提供するために重要になっています。...
食品業界は、ビッグデータに関して劇的なスピードで増加しています。 Food and Beveragesは、実用的な洞察によりさらに蓄積され、販売端末との関連する接点を獲得しています。これはすべて、企業がそれぞれのサービスに活用できるビッグデータの助けを借りて行われます。飲食料品業界の主な関心事は、顧客ロイヤルティが低いことであり、それにより競争が激化し、断片化されています。食品業界は、産業界で最も重要かつ最大のセクターであることは間違いありません。現在、食品および飲料業界は、技術面で急速に成長しています。...
新興技術に関する同社の新しいレポートでは、テレヘルスと仮想訪問、遠隔患者モニタリング、臨床的意思決定支援などに対する食欲と適性が高まっています。
近年、大手消費財企業の最高マーケティング責任者は驚異的な成功を収めています。彼らの最高は、消費者の日常生活の中心にブランドを埋め込むというマーケティングの聖杯を達成することによって、見事なブランド構築を開拓し、そのように巨人の評判を築きました。ある意味、それは理解できます。現在、マーケティング担当者にとって厳しい環境です。急速に加速する業界の変化のペースに対応するには、並外れた工夫、革新、洞察が必要です。そのため、CMOが試行され、テストされたマーケティング手法に後退しているのも不思議ではありません。実際、CMOの4人に3人は、戦略的なマーケティング目標を達成するための一番の方法は、過去に機能したソリューションを再適用することだと言います。
動きが速く、デザイナーからバイヤーまでのすべての人々は、最新の変化するトレンドをキャッチするために先を見越していることを確認する必要があります。アイテムを見つけて購入する方法は劇的に変わりました。過去数年間、小売業ほどヒットしている業界は他にありません。新興技術(AI、ブロックチェーン、IoT、3Dプリンティング、AR...
金融、保険、サプライチェーン、ヘルスケアなど、業界の特定のユースケース向けに独自のブロックチェーン設計を持つことが基本です。バイオメディカルおよびヘルスケアアプリケーションの大半は、プライベートネットワーク上で開発されたブロックチェーンフレームワークが最も受け入れられる参加者として、利害関係者を必要とします。参加のための暗号通貨のようなものでは、それらは推進力を必要としません。いくつかは、ハイパーレジャー、イーサリアムで人気のあるプライベートブロックチェーンの成果です。
以下は、2020年にモバイルヘルスアプリ業界に大きな影響を与え、患者のエクスペリエンスとエンゲージメントの向上に役立ついくつかの世界的な傾向を示しています。テクノロジーは、患者と顧客のヘルスケア業界の改善にのみ役立つことは間違いありません。いくつかのグローバルテクノロジーの助けを借りて、患者固有の骨、臓器、血管のレプリカの作成から絶えず変化し進歩しています。
ブロックチェーン技術は、ビジネスと最終的には経済を変革する可能性を秘めています。変化する消費者の要求に応え続け、競争に勝ち抜くために、計画と優先順位付けを開始する時が来ました。私たちのレポートは、小売および消費者向けパッケージ商品業界における50を超える潜在的なブロックチェーンのユースケースの詳細な分析を提供し、潜在的な価値と複雑さによって分類しています。
ビッグデータは、すべての業界および組織部門、特に人事(HR)業界のゲームチェンジャーとして浮上しています。ビッグデータとHRデータ分析を活用すると、採用、トレーニング、開発、パフォーマンス、報酬など、HRのほぼすべての分野に情報を提供し、改善することができます。ビッグデータを使用することで、HRマネージャーはより賢明な決定を下し、組織がより効率的に目標を達成できるように支援できます。
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
ファッションは、ミシンの発明から電子商取引の台頭まで、常に革新の温床でした。テクノロジーと同様に、ファッションは前向きで循環的です。 巨大な産業でもあります。...