analyticsjapan Jul 11, 2019 0 25
analyticsjapan Mar 9, 2020 0 25
analyticsjapan Jul 11, 2019 0 22
analyticsjapan Dec 20, 2019 0 19
analyticsjapan May 23, 2024 0 19
analyticsjapan Dec 20, 2019 0 190
analyticsjapan Mar 9, 2020 0 109
analyticsjapan Jul 11, 2019 0 88
analyticsjapan Jul 11, 2019 0 77
analyticsjapan Aug 27, 2019 0 76
analyticsjapan Mar 9, 2020 0 2008
analyticsjapan Jan 24, 2020 0 1548
analyticsjapan Feb 5, 2020 0 1539
analyticsjapan Feb 5, 2020 0 1507
analyticsjapan Feb 17, 2020 0 1469
analyticsjapan May 21, 2024 0 510
analyticsjapan Mar 9, 2020 0 5662
analyticsjapan Feb 17, 2020 0 3008
analyticsjapan Feb 5, 2020 0 3037
analyticsjapan Oct 22, 2019 0 2403
AIは、1956年に学問分野として設立されました。それ以来、AI技術はテクノロジー業界の重要な部分となっています。米国、中国、日本、韓国、インドなど、世界のさまざまな地域でさまざまな種類のAI駆動ロボットが開発されています。報告によると、AIへの世界的な投資の3分の2が中国に注がれました。これにより、昨年だけでAI産業が67%成長し、中国は2016年に科学技術大学でJia...
analyticsjapan Jun 3, 2019 0 3812
患者は常にヘルスケアシステムの究極のエンドユーザーです。この記事の他のすべての解決策は、何らかの方法で - 改善された患者アウトカムを提供することに焦点を当てています。それでも、支払人、医療提供者、またはライフサイエンス企業が仲介者として行動することなく、患者に直接アクセスすることを目的とした解決策もあります。
analyticsjapan Dec 20, 2019 0 3047
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
Aino Jul 29, 2019 0 2882
顧客維持は、ほとんどのSaaS企業またはサブスクリプション事業が直面している重要な課題の1つです。
analyticsjapan Sep 24, 2019 0 2308
価値を高める大きな可能性を得るために、ここ数十年は大量のデジタルデータを目撃しました。たとえば、患者の転帰を改善し、コストを削減するには、すべてのデジタルデータに対する患者の関与を増やすことが重要な要素です。いずれにせよ、中央管理システムと今日普及している従来のデータベースでは、このデータの大部分がサイロ内にロックされており、組織や業界がそれを利用してその潜在的な価値を明らかにする能力が大幅に低下しています。この記事では、ブロックチェーンをデータ中心に見ていきます。ブロックチェーンを使用して、データの安全なターゲット交換を促進し、その可能性を解き放ち、ビジネス価値を実現する方法を説明します。
analyticsjapan Nov 22, 2019 0 1989
人工知能の定義は「知的エージェントの研究と設計」であり、知的エージェントはその環境を認識し、成功の可能性を最大化する行動システムです。
analyticsjapan Jun 3, 2019 0 3627
保険数理科学が現代の金融理論と現在広く「データ科学」と呼んでいるものの両方に先んじて、データは常に支払人のビジネスモデルの中核をなしてきました。しかし医療では、支払人が直面する質問のセットは他のものよりも広いです分析が主に損失の可能性、損失のコスト、および価格競争力があるが有益な保険料に焦点を当てている保険会社の種類。今日では、有力支払者は保険会社と保険加入者の両方を対象にしており、データ分析は健康への影響に影響を与える能力の不可欠な要素です。
analyticsjapan Sep 12, 2019 0 2313
消費者は、生活のあらゆる面でパーソナライズされた体験を期待するようになりました。 AIを金融サービスで使用して、顧客をセグメント化し、リテールバンキングのコンバージョンと定着率を高めるパーソナライズされたオファーを推進できます。自動化されたエージェントは、ミレニアル世代を惹きつけるための鍵であり、人と話すことなく顧客が質問に答え、問題を自分で解決するのに役立ちます。不正行為を顧客に自動的に警告し、行動を起こすことで、顧客満足度を高め、解約の可能性を減らすことができます。
analyticsjapan Jan 24, 2020 0 3096
金融、保険、サプライチェーン、ヘルスケアなど、業界の特定のユースケース向けに独自のブロックチェーン設計を持つことが基本です。バイオメディカルおよびヘルスケアアプリケーションの大半は、プライベートネットワーク上で開発されたブロックチェーンフレームワークが最も受け入れられる参加者として、利害関係者を必要とします。参加のための暗号通貨のようなものでは、それらは推進力を必要としません。いくつかは、ハイパーレジャー、イーサリアムで人気のあるプライベートブロックチェーンの成果です。