Tag: 診断
データアナリティクス対人工知能–データアナリティクスがAI採用を加速する方 法
AIは企業にとっては流行語ですが、多くの組織はデータドリブン型になるためのデジタルトランスフォーメーションを未だに苦労しています。
analyticsjapan Aug 26, 2019 0 2687
AIは企業にとっては流行語ですが、多くの組織はデータドリブン型になるためのデジタルトランスフォーメーションを未だに苦労しています。
analyticsjapan Jan 14, 2020 0 32
analyticsjapan Jul 11, 2019 0 28
Aino Jul 29, 2019 0 26
analyticsjapan Dec 20, 2019 0 24
analyticsjapan Jul 12, 2019 0 23
analyticsjapan Jan 14, 2020 0 157
analyticsjapan Mar 9, 2020 0 138
Aino Jul 29, 2019 0 138
analyticsjapan Jul 11, 2019 0 130
analyticsjapan Dec 20, 2019 0 128
Aino Jul 29, 2019 0 1195
analyticsjapan Jul 11, 2019 0 1175
analyticsjapan Mar 9, 2020 0 1156
analyticsjapan Jan 14, 2020 0 1089
analyticsjapan Dec 20, 2019 0 1080
analyticsjapan May 21, 2024 0 1030
analyticsjapan Mar 9, 2020 0 6406
analyticsjapan Feb 17, 2020 0 3479
analyticsjapan Feb 5, 2020 0 3470
analyticsjapan Dec 27, 2019 0 2110
ビッグデータは、すべての業界および組織部門、特に人事(HR)業界のゲームチェンジャーとして浮上しています。ビッグデータとHRデータ分析を活用すると、採用、トレーニング、開発、パフォーマンス、報酬など、HRのほぼすべての分野に情報を提供し、改善することができます。ビッグデータを使用することで、HRマネージャーはより賢明な決定を下し、組織がより効率的に目標を達成できるように支援できます。
analyticsjapan Oct 18, 2019 0 2607
RPAイニシアチブが実現に失敗した場合、これはロボットが十分に賢くないためであるという自然な仮定があります。しかし、スマートになるのはロボットの仕事ではありません。AIの仕事です。
analyticsjapan Jul 11, 2019 0 2865
すべての業界、すべての企業、そしてすべてのリーダーが、このたった1つの単純な事実を認識する必要があります。すべての製品、サービス、プロセス、ビジネスモデルが混乱するということ、それは時間の問題です。地球上のすべての業界でのトレンドやテクノロジーの影響を受けないなどと考える企業は、衰退する危険に晒されていることに気が付かなければなりません。
analyticsjapan Jul 12, 2019 0 3551
SalesforceがTableau Softwareを買収したという、業界には大きなニュースが発表されました。 買収金額は153億ドルで、これは史上最大の買収です。Salesforceが自社の製品ポートフォリオにさらに多くのデータインサイトと顧客データテクノロジーを得るための最大の動きです。
Aino Jul 29, 2019 0 3591
顧客維持は、ほとんどのSaaS企業またはサブスクリプション事業が直面している重要な課題の1つです。
analyticsjapan Oct 21, 2019 0 2803
ヒューマンバイアスの削減:AIは、人間の直感や知覚ではなくデータに依存しているため、人間の視点が歪曲されて意思決定プロセスが阻害される可能性がなくなります。これにより、組織を差別訴訟から保護することができますが、よりまとまりのある、コミュニケーションのとれる職場を作り出すこともできます。
analyticsjapan Jul 11, 2019 0 2421
15兆ドル規模の商業用不動産業界の意思決定者は、不十分なデータに基づいて巨大な決定を下すことを余儀なくされています。調査は高価で、しかし時間がかかります。他のデータソースには偏りがあり制限されているため、専門家は数千万ドル以上の価値のある選択肢に気付かずにいます。
analyticsjapan Nov 22, 2019 0 2446
人工知能の定義は「知的エージェントの研究と設計」であり、知的エージェントはその環境を認識し、成功の可能性を最大化する行動システムです。
analyticsjapan Dec 20, 2019 0 3654
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Jan 14, 2020 0 2894
以下は、2020年にモバイルヘルスアプリ業界に大きな影響を与え、患者のエクスペリエンスとエンゲージメントの向上に役立ついくつかの世界的な傾向を示しています。テクノロジーは、患者と顧客のヘルスケア業界の改善にのみ役立つことは間違いありません。いくつかのグローバルテクノロジーの助けを借りて、患者固有の骨、臓器、血管のレプリカの作成から絶えず変化し進歩しています。