Tag: 自動化
RPAにおける人工知能の影響力のある役割
RPAイニシアチブが実現に失敗した場合、これはロボットが十分に賢くないためであるという自然な仮定があります。しかし、スマートになるのはロボットの仕事ではありません。AIの仕事です。
analyticsjapan Oct 18, 2019 0 2430
RPAイニシアチブが実現に失敗した場合、これはロボットが十分に賢くないためであるという自然な仮定があります。しかし、スマートになるのはロボットの仕事ではありません。AIの仕事です。
analyticsjapan Jul 11, 2019 0 29
analyticsjapan Dec 12, 2019 0 28
analyticsjapan Jan 14, 2020 0 27
analyticsjapan May 23, 2024 0 27
Aino Aug 5, 2019 0 26
analyticsjapan Mar 9, 2020 0 93
analyticsjapan Jul 11, 2019 0 90
analyticsjapan Dec 20, 2019 0 88
analyticsjapan Jul 11, 2019 0 87
analyticsjapan May 23, 2024 0 87
analyticsjapan Mar 9, 2020 0 1182
analyticsjapan Jun 3, 2019 0 1133
analyticsjapan Jul 11, 2019 0 1116
analyticsjapan Jun 3, 2019 0 1074
Aino Jul 29, 2019 0 1057
analyticsjapan May 21, 2024 0 782
analyticsjapan Mar 9, 2020 0 6071
analyticsjapan Feb 17, 2020 0 3239
analyticsjapan Feb 5, 2020 0 3260
analyticsjapan Aug 8, 2019 0 3122
すべての組織は現在、よりデータ駆動型の試みを行っています。機械学習の手法は、この取り組みに役立ちました。私は、世の中の多くの資料が技術的すぎて理解しにくいことを知っています。この一連の記事では、私の目的はデータサイエンスを簡素化することです。私はスタンフォードの講座、本から手がかりを得ています。この試みは、誰にとってもデータサイエンスを理解しやすくすることです。
analyticsjapan Jun 3, 2019 0 4076
患者は常にヘルスケアシステムの究極のエンドユーザーです。この記事の他のすべての解決策は、何らかの方法で - 改善された患者アウトカムを提供することに焦点を当てています。それでも、支払人、医療提供者、またはライフサイエンス企業が仲介者として行動することなく、患者に直接アクセスすることを目的とした解決策もあります。
analyticsjapan Dec 27, 2019 0 1935
ビッグデータは、すべての業界および組織部門、特に人事(HR)業界のゲームチェンジャーとして浮上しています。ビッグデータとHRデータ分析を活用すると、採用、トレーニング、開発、パフォーマンス、報酬など、HRのほぼすべての分野に情報を提供し、改善することができます。ビッグデータを使用することで、HRマネージャーはより賢明な決定を下し、組織がより効率的に目標を達成できるように支援できます。
analyticsjapan Nov 22, 2019 0 2237
人工知能の定義は「知的エージェントの研究と設計」であり、知的エージェントはその環境を認識し、成功の可能性を最大化する行動システムです。
analyticsjapan Feb 5, 2020 0 3433
動きが速く、デザイナーからバイヤーまでのすべての人々は、最新の変化するトレンドをキャッチするために先を見越していることを確認する必要があります。アイテムを見つけて購入する方法は劇的に変わりました。過去数年間、小売業ほどヒットしている業界は他にありません。新興技術(AI、ブロックチェーン、IoT、3Dプリンティング、AR...
analyticsjapan Dec 20, 2019 0 3369
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Jul 11, 2019 0 2594
すべての業界、すべての企業、そしてすべてのリーダーが、このたった1つの単純な事実を認識する必要があります。すべての製品、サービス、プロセス、ビジネスモデルが混乱するということ、それは時間の問題です。地球上のすべての業界でのトレンドやテクノロジーの影響を受けないなどと考える企業は、衰退する危険に晒されていることに気が付かなければなりません。
analyticsjapan Sep 12, 2019 0 2516
消費者は、生活のあらゆる面でパーソナライズされた体験を期待するようになりました。 AIを金融サービスで使用して、顧客をセグメント化し、リテールバンキングのコンバージョンと定着率を高めるパーソナライズされたオファーを推進できます。自動化されたエージェントは、ミレニアル世代を惹きつけるための鍵であり、人と話すことなく顧客が質問に答え、問題を自分で解決するのに役立ちます。不正行為を顧客に自動的に警告し、行動を起こすことで、顧客満足度を高め、解約の可能性を減らすことができます。
analyticsjapan Aug 27, 2019 0 3187
慢性疾患と心臓病、脳卒中、がん、2型糖尿病、肥満、関節炎などの慢性疾患は、すべての健康問題の中で最も一般的で、費用がかかり、予防可能なものです。 慢性疾患の発生率の増加に加えて、65歳以上の保健計画対象の人数が増えており、統計的に慢性疾患のリスクが高くなっています。