Tag: ブランド
ファッション業界におけるデザインから商品化への技術革新
ファッションは、ミシンの発明から電子商取引の台頭まで、常に革新の温床でした。テクノロジーと同様に、ファッションは前向きで循環的です。 巨大な産業でもあります。...
analyticsjapan Dec 20, 2019 0 3653
ファッションは、ミシンの発明から電子商取引の台頭まで、常に革新の温床でした。テクノロジーと同様に、ファッションは前向きで循環的です。 巨大な産業でもあります。...
analyticsjapan Dec 12, 2019 0 28
analyticsjapan Jul 11, 2019 0 27
analyticsjapan May 23, 2024 0 26
analyticsjapan Jan 14, 2020 0 24
Aino Aug 5, 2019 0 24
analyticsjapan Mar 9, 2020 0 90
analyticsjapan Jul 11, 2019 0 86
analyticsjapan May 23, 2024 0 86
analyticsjapan Jul 11, 2019 0 85
analyticsjapan Dec 20, 2019 0 84
analyticsjapan Mar 9, 2020 0 1179
analyticsjapan Jun 3, 2019 0 1131
analyticsjapan Jul 11, 2019 0 1115
analyticsjapan Jun 3, 2019 0 1071
Aino Jul 29, 2019 0 1056
analyticsjapan May 21, 2024 0 779
analyticsjapan Mar 9, 2020 0 6067
analyticsjapan Feb 17, 2020 0 3237
analyticsjapan Feb 5, 2020 0 3257
analyticsjapan Jan 14, 2020 0 2464
以下は、2020年にモバイルヘルスアプリ業界に大きな影響を与え、患者のエクスペリエンスとエンゲージメントの向上に役立ついくつかの世界的な傾向を示しています。テクノロジーは、患者と顧客のヘルスケア業界の改善にのみ役立つことは間違いありません。いくつかのグローバルテクノロジーの助けを借りて、患者固有の骨、臓器、血管のレプリカの作成から絶えず変化し進歩しています。
analyticsjapan Sep 12, 2019 0 2513
消費者は、生活のあらゆる面でパーソナライズされた体験を期待するようになりました。 AIを金融サービスで使用して、顧客をセグメント化し、リテールバンキングのコンバージョンと定着率を高めるパーソナライズされたオファーを推進できます。自動化されたエージェントは、ミレニアル世代を惹きつけるための鍵であり、人と話すことなく顧客が質問に答え、問題を自分で解決するのに役立ちます。不正行為を顧客に自動的に警告し、行動を起こすことで、顧客満足度を高め、解約の可能性を減らすことができます。
analyticsjapan Jun 3, 2019 0 3517
ライフサイエンス企業は常にデータ企業です。 NovartisのGlobal Drug Development内のPredictive Analytics&Designグループのルカ・フィネリ博士は、次のように述べています。「現実には、私たちはデータ会社です。...
analyticsjapan Oct 22, 2019 0 2676
AIは、1956年に学問分野として設立されました。それ以来、AI技術はテクノロジー業界の重要な部分となっています。米国、中国、日本、韓国、インドなど、世界のさまざまな地域でさまざまな種類のAI駆動ロボットが開発されています。報告によると、AIへの世界的な投資の3分の2が中国に注がれました。これにより、昨年だけでAI産業が67%成長し、中国は2016年に科学技術大学でJia...
analyticsjapan Jul 11, 2019 0 2411
商業用不動産業界は、最近では、「AI」、「ビッグデータ」、「機械学習」、「予測分析」などの用語で溢れています。
Aino Aug 16, 2019 0 3837
人工知能(AI)は、幻想的な架空の要素と限定的なゲーム機能から離れました。現在、AIは科学実験から検索エンジンやお気に入りのソーシャルメディアなどの日常的なものまで、あらゆる場所で見られます。しかし、ほとんどすべての家庭で目に見えないように動作するこの新しいテクノロジーは、どのように私たちの生活を変えることができますか?
Aino Jul 19, 2019 0 3147
需要と製薬の研究開発投資の両方によって、日本で最も重要な製薬療法分野は何だと思いますか?
analyticsjapan Aug 8, 2019 0 3120
すべての組織は現在、よりデータ駆動型の試みを行っています。機械学習の手法は、この取り組みに役立ちました。私は、世の中の多くの資料が技術的すぎて理解しにくいことを知っています。この一連の記事では、私の目的はデータサイエンスを簡素化することです。私はスタンフォードの講座、本から手がかりを得ています。この試みは、誰にとってもデータサイエンスを理解しやすくすることです。
analyticsjapan Dec 12, 2019 0 2656
保険業界は常に非常に保守的です。ただし、新しい技術の採用は単なる現代のトレンドではなく、競争のペースを維持するために必要なものです。現代のデジタル時代では、ビッグデータテクノロジーは膨大な量の情報を処理し、ワークフローの効率を高め、運用コス
analyticsjapan Dec 20, 2019 0 3366
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。