analyticsjapan Aug 8, 2019 0 3120
すべての組織は現在、よりデータ駆動型の試みを行っています。機械学習の手法は、この取り組みに役立ちました。私は、世の中の多くの資料が技術的すぎて理解しにくいことを知っています。この一連の記事では、私の目的はデータサイエンスを簡素化することです。私はスタンフォードの講座、本から手がかりを得ています。この試みは、誰にとってもデータサイエンスを理解しやすくすることです。
analyticsjapan Jul 11, 2019 0 29
analyticsjapan Dec 12, 2019 0 29
analyticsjapan May 23, 2024 0 27
analyticsjapan Jan 14, 2020 0 25
Aino Aug 5, 2019 0 25
analyticsjapan Mar 9, 2020 0 90
analyticsjapan May 23, 2024 0 87
analyticsjapan Jul 11, 2019 0 86
analyticsjapan Jul 11, 2019 0 85
analyticsjapan Dec 20, 2019 0 84
analyticsjapan Mar 9, 2020 0 1179
analyticsjapan Jun 3, 2019 0 1131
analyticsjapan Jul 11, 2019 0 1115
analyticsjapan Jun 3, 2019 0 1070
Aino Jul 29, 2019 0 1057
analyticsjapan May 21, 2024 0 778
analyticsjapan Mar 9, 2020 0 6067
analyticsjapan Feb 17, 2020 0 3237
analyticsjapan Feb 5, 2020 0 3257
analyticsjapan Sep 12, 2019 0 2513
消費者は、生活のあらゆる面でパーソナライズされた体験を期待するようになりました。 AIを金融サービスで使用して、顧客をセグメント化し、リテールバンキングのコンバージョンと定着率を高めるパーソナライズされたオファーを推進できます。自動化されたエージェントは、ミレニアル世代を惹きつけるための鍵であり、人と話すことなく顧客が質問に答え、問題を自分で解決するのに役立ちます。不正行為を顧客に自動的に警告し、行動を起こすことで、顧客満足度を高め、解約の可能性を減らすことができます。
analyticsjapan Dec 20, 2019 0 3366
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Jan 6, 2020 0 2679
ブロックチェーン技術は、ビジネスと最終的には経済を変革する可能性を秘めています。変化する消費者の要求に応え続け、競争に勝ち抜くために、計画と優先順位付けを開始する時が来ました。私たちのレポートは、小売および消費者向けパッケージ商品業界における50を超える潜在的なブロックチェーンのユースケースの詳細な分析を提供し、潜在的な価値と複雑さによって分類しています。
analyticsjapan Jul 12, 2019 0 3193
SalesforceがTableau Softwareを買収したという、業界には大きなニュースが発表されました。 買収金額は153億ドルで、これは史上最大の買収です。Salesforceが自社の製品ポートフォリオにさらに多くのデータインサイトと顧客データテクノロジーを得るための最大の動きです。
analyticsjapan Jul 11, 2019 0 2790
現在(米国では)約80億ドルと評価されている教育テクノロジー:Edtech業界は、近年、投資資本の大量流入の恩恵を受けています。これは、2018年だけでも14億5000万ドルと報告されています。
analyticsjapan Feb 17, 2020 0 3237
新興技術に関する同社の新しいレポートでは、テレヘルスと仮想訪問、遠隔患者モニタリング、臨床的意思決定支援などに対する食欲と適性が高まっています。
analyticsjapan Nov 22, 2019 0 2235
人工知能の定義は「知的エージェントの研究と設計」であり、知的エージェントはその環境を認識し、成功の可能性を最大化する行動システムです。
analyticsjapan Aug 8, 2019 0 3120
すべての組織は現在、よりデータ駆動型の試みを行っています。機械学習の手法は、この取り組みに役立ちました。私は、世の中の多くの資料が技術的すぎて理解しにくいことを知っています。この一連の記事では、私の目的はデータサイエンスを簡素化することです。私はスタンフォードの講座、本から手がかりを得ています。この試みは、誰にとってもデータサイエンスを理解しやすくすることです。
analyticsjapan May 21, 2024 0 778
このブログは、人工知能(AI)が金融部門で果たす変革的な役割について探求します。AIは、顧客サービス、業務効率、セキュリティ、およびデータに基づく意思決定など、金融のさまざまな側面を革新しました。このブログでは、AIの利点がコスト削減、プロセスの効率化、セキュリティ対策の強化、戦略的インサイトのためのデータの活用などに焦点を当てています。世界のAI市場が大きな数字に達し、フィンテック市場が大幅な成長が見込まれる中、AIを取り入れることは、金融機関が競争力を維持し、顧客に優れた体験を提供するために重要になっています。...