Tag: 分析 #予測分析
AIは従業員エンゲージメントの将来をどのように形作っているのでしょうか。
人工知能(AI)は議論の的となっている話題であり、業界の分野を超えて堅実な支持を得ています。このテクノロジーはここ数カ月間トレンドにあり、日々進化しているため、製造、金融、およびジャーナリズムの分野で新しいユースケースが生まれています。最近では、AIは従業員のエンゲージメントを高め、世界中の組織での採用、トレーニング、定着の方法を改善するための効果的なツールと見なされています。
Aino Aug 5, 2019 0 2983
人工知能(AI)は議論の的となっている話題であり、業界の分野を超えて堅実な支持を得ています。このテクノロジーはここ数カ月間トレンドにあり、日々進化しているため、製造、金融、およびジャーナリズムの分野で新しいユースケースが生まれています。最近では、AIは従業員のエンゲージメントを高め、世界中の組織での採用、トレーニング、定着の方法を改善するための効果的なツールと見なされています。
analyticsjapan Jan 14, 2020 0 36
analyticsjapan Dec 20, 2019 0 30
Aino Jul 29, 2019 0 29
analyticsjapan Jan 6, 2020 0 26
analyticsjapan Mar 9, 2020 0 26
analyticsjapan Jan 14, 2020 0 158
Aino Jul 29, 2019 0 136
analyticsjapan Mar 9, 2020 0 132
analyticsjapan Jul 11, 2019 0 126
analyticsjapan Dec 20, 2019 0 126
Aino Jul 29, 2019 0 1193
analyticsjapan Jul 11, 2019 0 1164
analyticsjapan Mar 9, 2020 0 1151
analyticsjapan Jan 14, 2020 0 1082
analyticsjapan Dec 20, 2019 0 1076
analyticsjapan May 21, 2024 0 1027
analyticsjapan Mar 9, 2020 0 6393
analyticsjapan Feb 17, 2020 0 3475
analyticsjapan Feb 5, 2020 0 3464
analyticsjapan May 23, 2024 0 1039
このブログでは、デジタルヘルステクノロジーが患者のエンパワーメントを向上させ、医療を変革している方法について探求します。デジタル革命はさまざまな産業に大きな影響を与えており、医療も例外ではありません。デジタルヘルステクノロジーの登場により、患者は今や自身の個人的な健康データをより多くの制御下に置くことができ、これによりエンパワーメントが増し、医療に積極的に参加することができます。...
analyticsjapan Jul 11, 2019 0 3953
ビッグデータはここ数年の間ずっと話題になってきましたが、今日それは実際に使用されているでしょうか。 ビッグデータを適用するための道のりは、かなりの準備段階が必要で手を出せないテクノロジーのように思われますが、適切なツール、チーム、戦略があれば、ビッグデータを活用して市場競争の優位性を目指すことが可能です。...
analyticsjapan Jun 3, 2019 0 4261
まだ初期の段階にありましたが、プロバイダー分析は過去10年間で電子カルテ(EHR)の大量採用に伴って始まりました。プロバイダ分析ソリューションは、2つの大きなバケツに分類されます.
analyticsjapan Dec 20, 2019 0 3646
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Dec 27, 2019 0 2108
ビッグデータは、すべての業界および組織部門、特に人事(HR)業界のゲームチェンジャーとして浮上しています。ビッグデータとHRデータ分析を活用すると、採用、トレーニング、開発、パフォーマンス、報酬など、HRのほぼすべての分野に情報を提供し、改善することができます。ビッグデータを使用することで、HRマネージャーはより賢明な決定を下し、組織がより効率的に目標を達成できるように支援できます。
analyticsjapan Sep 5, 2019 0 5054
人工知能についてはロボットの恐ろしい報告から、テクノロジーに対する想像以上の期待にまで及んでいます。現在、消費者はスマートフォン、カスタマーサービスセンター、ウェブサイト、アプライアンスを通じて人工知能に絶えず触れる機会があります。調査によると、人々の80%がAIが自分の生活に良い影響をもたらしていると報告しています。テクノロジー、映画、芸術、および文学の圧倒的な前向きな支持にも関わらず、何故恐ろしく思われているのでしょうか。それでは、どれだけ現実に基づいているのでしょうか?これらの質問に答えるためには、事実を確認することが重要です。...
analyticsjapan Aug 8, 2019 0 3309
すべての組織は現在、よりデータ駆動型の試みを行っています。機械学習の手法は、この取り組みに役立ちました。私は、世の中の多くの資料が技術的すぎて理解しにくいことを知っています。この一連の記事では、私の目的はデータサイエンスを簡素化することです。私はスタンフォードの講座、本から手がかりを得ています。この試みは、誰にとってもデータサイエンスを理解しやすくすることです。
analyticsjapan Jun 3, 2019 0 4140
保険数理科学が現代の金融理論と現在広く「データ科学」と呼んでいるものの両方に先んじて、データは常に支払人のビジネスモデルの中核をなしてきました。しかし医療では、支払人が直面する質問のセットは他のものよりも広いです分析が主に損失の可能性、損失のコスト、および価格競争力があるが有益な保険料に焦点を当てている保険会社の種類。今日では、有力支払者は保険会社と保険加入者の両方を対象にしており、データ分析は健康への影響に影響を与える能力の不可欠な要素です。
analyticsjapan Sep 24, 2019 0 2673
価値を高める大きな可能性を得るために、ここ数十年は大量のデジタルデータを目撃しました。たとえば、患者の転帰を改善し、コストを削減するには、すべてのデジタルデータに対する患者の関与を増やすことが重要な要素です。いずれにせよ、中央管理システムと今日普及している従来のデータベースでは、このデータの大部分がサイロ内にロックされており、組織や業界がそれを利用してその潜在的な価値を明らかにする能力が大幅に低下しています。この記事では、ブロックチェーンをデータ中心に見ていきます。ブロックチェーンを使用して、データの安全なターゲット交換を促進し、その可能性を解き放ち、ビジネス価値を実現する方法を説明します。