Tag: 予測分析
RPAにおける人工知能の影響力のある役割
RPAイニシアチブが実現に失敗した場合、これはロボットが十分に賢くないためであるという自然な仮定があります。しかし、スマートになるのはロボットの仕事ではありません。AIの仕事です。
analyticsjapan Oct 18, 2019 0 2607
RPAイニシアチブが実現に失敗した場合、これはロボットが十分に賢くないためであるという自然な仮定があります。しかし、スマートになるのはロボットの仕事ではありません。AIの仕事です。
analyticsjapan Jul 11, 2019 0 29
analyticsjapan Jan 14, 2020 0 29
Aino Jul 29, 2019 0 25
analyticsjapan Jul 12, 2019 0 24
analyticsjapan Dec 20, 2019 0 23
analyticsjapan Jan 14, 2020 0 156
Aino Jul 29, 2019 0 139
analyticsjapan Mar 9, 2020 0 138
analyticsjapan Jul 11, 2019 0 132
analyticsjapan Jul 12, 2019 0 129
Aino Jul 29, 2019 0 1195
analyticsjapan Jul 11, 2019 0 1176
analyticsjapan Mar 9, 2020 0 1159
analyticsjapan Jan 14, 2020 0 1087
analyticsjapan Dec 20, 2019 0 1082
analyticsjapan May 21, 2024 0 1030
analyticsjapan Mar 9, 2020 0 6406
analyticsjapan Feb 17, 2020 0 3479
analyticsjapan Feb 5, 2020 0 3469
Aino Aug 16, 2019 0 4034
人工知能(AI)は、幻想的な架空の要素と限定的なゲーム機能から離れました。現在、AIは科学実験から検索エンジンやお気に入りのソーシャルメディアなどの日常的なものまで、あらゆる場所で見られます。しかし、ほとんどすべての家庭で目に見えないように動作するこの新しいテクノロジーは、どのように私たちの生活を変えることができますか?
analyticsjapan Oct 21, 2019 0 2803
ヒューマンバイアスの削減:AIは、人間の直感や知覚ではなくデータに依存しているため、人間の視点が歪曲されて意思決定プロセスが阻害される可能性がなくなります。これにより、組織を差別訴訟から保護することができますが、よりまとまりのある、コミュニケーションのとれる職場を作り出すこともできます。
analyticsjapan Jun 3, 2019 0 4263
まだ初期の段階にありましたが、プロバイダー分析は過去10年間で電子カルテ(EHR)の大量採用に伴って始まりました。プロバイダ分析ソリューションは、2つの大きなバケツに分類されます.
analyticsjapan Jun 3, 2019 0 4290
患者は常にヘルスケアシステムの究極のエンドユーザーです。この記事の他のすべての解決策は、何らかの方法で - 改善された患者アウトカムを提供することに焦点を当てています。それでも、支払人、医療提供者、またはライフサイエンス企業が仲介者として行動することなく、患者に直接アクセスすることを目的とした解決策もあります。
analyticsjapan Aug 27, 2019 0 3405
慢性疾患と心臓病、脳卒中、がん、2型糖尿病、肥満、関節炎などの慢性疾患は、すべての健康問題の中で最も一般的で、費用がかかり、予防可能なものです。 慢性疾患の発生率の増加に加えて、65歳以上の保健計画対象の人数が増えており、統計的に慢性疾患のリスクが高くなっています。
analyticsjapan Feb 5, 2020 0 3469
近年、大手消費財企業の最高マーケティング責任者は驚異的な成功を収めています。彼らの最高は、消費者の日常生活の中心にブランドを埋め込むというマーケティングの聖杯を達成することによって、見事なブランド構築を開拓し、そのように巨人の評判を築きました。ある意味、それは理解できます。現在、マーケティング担当者にとって厳しい環境です。急速に加速する業界の変化のペースに対応するには、並外れた工夫、革新、洞察が必要です。そのため、CMOが試行され、テストされたマーケティング手法に後退しているのも不思議ではありません。実際、CMOの4人に3人は、戦略的なマーケティング目標を達成するための一番の方法は、過去に機能したソリューションを再適用することだと言います。
analyticsjapan Jul 11, 2019 0 2862
すべての業界、すべての企業、そしてすべてのリーダーが、このたった1つの単純な事実を認識する必要があります。すべての製品、サービス、プロセス、ビジネスモデルが混乱するということ、それは時間の問題です。地球上のすべての業界でのトレンドやテクノロジーの影響を受けないなどと考える企業は、衰退する危険に晒されていることに気が付かなければなりません。
analyticsjapan Aug 29, 2019 0 2990
ロボットの時代が到来しました!ファッションとテクノロジーが組み合わさってから、長い間トレンドになっています。服を着て、カメラに向かって「アレクサ、私の見た目はどう?」と聞くと、ほんの数秒でその小さなスピーカーがデータを元に回答を提供します!...
analyticsjapan Sep 5, 2019 0 5057
人工知能についてはロボットの恐ろしい報告から、テクノロジーに対する想像以上の期待にまで及んでいます。現在、消費者はスマートフォン、カスタマーサービスセンター、ウェブサイト、アプライアンスを通じて人工知能に絶えず触れる機会があります。調査によると、人々の80%がAIが自分の生活に良い影響をもたらしていると報告しています。テクノロジー、映画、芸術、および文学の圧倒的な前向きな支持にも関わらず、何故恐ろしく思われているのでしょうか。それでは、どれだけ現実に基づいているのでしょうか?これらの質問に答えるためには、事実を確認することが重要です。...
analyticsjapan Dec 20, 2019 0 3654
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。