Tag: コラボレーション
AIは従業員エンゲージメントの将来をどのように形作っているのでしょうか。
人工知能(AI)は議論の的となっている話題であり、業界の分野を超えて堅実な支持を得ています。このテクノロジーはここ数カ月間トレンドにあり、日々進化しているため、製造、金融、およびジャーナリズムの分野で新しいユースケースが生まれています。最近では、AIは従業員のエンゲージメントを高め、世界中の組織での採用、トレーニング、定着の方法を改善するための効果的なツールと見なされています。
Aino Aug 5, 2019 0 3100
人工知能(AI)は議論の的となっている話題であり、業界の分野を超えて堅実な支持を得ています。このテクノロジーはここ数カ月間トレンドにあり、日々進化しているため、製造、金融、およびジャーナリズムの分野で新しいユースケースが生まれています。最近では、AIは従業員のエンゲージメントを高め、世界中の組織での採用、トレーニング、定着の方法を改善するための効果的なツールと見なされています。
analyticsjapan Jul 11, 2019 0 41
analyticsjapan Dec 20, 2019 0 41
analyticsjapan Jul 12, 2019 0 40
analyticsjapan Jan 6, 2020 0 39
analyticsjapan Jan 14, 2020 0 38
analyticsjapan Jul 11, 2019 0 146
analyticsjapan Jul 12, 2019 0 145
Aino Jul 29, 2019 0 144
analyticsjapan Jan 14, 2020 0 140
analyticsjapan Jan 6, 2020 0 137
Aino Jul 29, 2019 0 1284
analyticsjapan Jul 11, 2019 0 1263
analyticsjapan Jan 14, 2020 0 1222
analyticsjapan Dec 20, 2019 0 1200
analyticsjapan Mar 9, 2020 0 1171
analyticsjapan May 21, 2024 0 1110
analyticsjapan Mar 9, 2020 0 6568
analyticsjapan Feb 17, 2020 0 3581
analyticsjapan Feb 5, 2020 0 3560
analyticsjapan Jul 11, 2019 0 3532
2017年初め、AmazonはAIの新しい機能を発表しました。AmazonGoは、レジ係やチェックアウトラインを必要としない、人工知能搭載の店舗の食品スーパーです。買い物客は、専用スマートフォンアプリをアクティブにして入店し、必要なものを持ち上げるだけ。クレジットカードや現金を引き出すのを待たずに、入店の際と同じゲートを通って外に出るだけで、お買い物完了となるのです。買い物客のAmazonアカウントに対して自動的に、先ほど持ち上げて取った商品価格が課金されます。
analyticsjapan Aug 27, 2019 0 3530
慢性疾患と心臓病、脳卒中、がん、2型糖尿病、肥満、関節炎などの慢性疾患は、すべての健康問題の中で最も一般的で、費用がかかり、予防可能なものです。 慢性疾患の発生率の増加に加えて、65歳以上の保健計画対象の人数が増えており、統計的に慢性疾患のリスクが高くなっています。
analyticsjapan Oct 22, 2019 0 3019
AIは、1956年に学問分野として設立されました。それ以来、AI技術はテクノロジー業界の重要な部分となっています。米国、中国、日本、韓国、インドなど、世界のさまざまな地域でさまざまな種類のAI駆動ロボットが開発されています。報告によると、AIへの世界的な投資の3分の2が中国に注がれました。これにより、昨年だけでAI産業が67%成長し、中国は2016年に科学技術大学でJia...
analyticsjapan Sep 24, 2019 0 2753
価値を高める大きな可能性を得るために、ここ数十年は大量のデジタルデータを目撃しました。たとえば、患者の転帰を改善し、コストを削減するには、すべてのデジタルデータに対する患者の関与を増やすことが重要な要素です。いずれにせよ、中央管理システムと今日普及している従来のデータベースでは、このデータの大部分がサイロ内にロックされており、組織や業界がそれを利用してその潜在的な価値を明らかにする能力が大幅に低下しています。この記事では、ブロックチェーンをデータ中心に見ていきます。ブロックチェーンを使用して、データの安全なターゲット交換を促進し、その可能性を解き放ち、ビジネス価値を実現する方法を説明します。
analyticsjapan Dec 20, 2019 0 4262
ファッションは、ミシンの発明から電子商取引の台頭まで、常に革新の温床でした。テクノロジーと同様に、ファッションは前向きで循環的です。 巨大な産業でもあります。...
analyticsjapan Feb 5, 2020 0 3560
近年、大手消費財企業の最高マーケティング責任者は驚異的な成功を収めています。彼らの最高は、消費者の日常生活の中心にブランドを埋め込むというマーケティングの聖杯を達成することによって、見事なブランド構築を開拓し、そのように巨人の評判を築きました。ある意味、それは理解できます。現在、マーケティング担当者にとって厳しい環境です。急速に加速する業界の変化のペースに対応するには、並外れた工夫、革新、洞察が必要です。そのため、CMOが試行され、テストされたマーケティング手法に後退しているのも不思議ではありません。実際、CMOの4人に3人は、戦略的なマーケティング目標を達成するための一番の方法は、過去に機能したソリューションを再適用することだと言います。
analyticsjapan Oct 21, 2019 0 2929
ヒューマンバイアスの削減:AIは、人間の直感や知覚ではなくデータに依存しているため、人間の視点が歪曲されて意思決定プロセスが阻害される可能性がなくなります。これにより、組織を差別訴訟から保護することができますが、よりまとまりのある、コミュニケーションのとれる職場を作り出すこともできます。
analyticsjapan Sep 12, 2019 0 2811
消費者は、生活のあらゆる面でパーソナライズされた体験を期待するようになりました。 AIを金融サービスで使用して、顧客をセグメント化し、リテールバンキングのコンバージョンと定着率を高めるパーソナライズされたオファーを推進できます。自動化されたエージェントは、ミレニアル世代を惹きつけるための鍵であり、人と話すことなく顧客が質問に答え、問題を自分で解決するのに役立ちます。不正行為を顧客に自動的に警告し、行動を起こすことで、顧客満足度を高め、解約の可能性を減らすことができます。
analyticsjapan Dec 20, 2019 0 3835
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Oct 18, 2019 0 2688
RPAイニシアチブが実現に失敗した場合、これはロボットが十分に賢くないためであるという自然な仮定があります。しかし、スマートになるのはロボットの仕事ではありません。AIの仕事です。