analyticsjapan Dec 12, 2019 0 2989
保険業界は常に非常に保守的です。ただし、新しい技術の採用は単なる現代のトレンドではなく、競争のペースを維持するために必要なものです。現代のデジタル時代では、ビッグデータテクノロジーは膨大な量の情報を処理し、ワークフローの効率を高め、運用コス
analyticsjapan Jul 12, 2019 0 42
analyticsjapan Jul 11, 2019 0 41
analyticsjapan Dec 20, 2019 0 40
analyticsjapan Jan 6, 2020 0 39
analyticsjapan Jan 14, 2020 0 39
analyticsjapan Jul 11, 2019 0 144
analyticsjapan Jul 12, 2019 0 143
Aino Jul 29, 2019 0 142
analyticsjapan Jan 14, 2020 0 138
analyticsjapan Jan 6, 2020 0 134
Aino Jul 29, 2019 0 1282
analyticsjapan Jul 11, 2019 0 1261
analyticsjapan Jan 14, 2020 0 1220
analyticsjapan Dec 20, 2019 0 1197
analyticsjapan Mar 9, 2020 0 1170
analyticsjapan May 21, 2024 0 1109
analyticsjapan Mar 9, 2020 0 6567
analyticsjapan Feb 17, 2020 0 3580
analyticsjapan Feb 5, 2020 0 3558
analyticsjapan Feb 17, 2020 0 3580
新興技術に関する同社の新しいレポートでは、テレヘルスと仮想訪問、遠隔患者モニタリング、臨床的意思決定支援などに対する食欲と適性が高まっています。
analyticsjapan Jul 11, 2019 0 4089
ビッグデータはここ数年の間ずっと話題になってきましたが、今日それは実際に使用されているでしょうか。 ビッグデータを適用するための道のりは、かなりの準備段階が必要で手を出せないテクノロジーのように思われますが、適切なツール、チーム、戦略があれば、ビッグデータを活用して市場競争の優位性を目指すことが可能です。...
analyticsjapan Jul 11, 2019 0 2965
すべての業界、すべての企業、そしてすべてのリーダーが、このたった1つの単純な事実を認識する必要があります。すべての製品、サービス、プロセス、ビジネスモデルが混乱するということ、それは時間の問題です。地球上のすべての業界でのトレンドやテクノロジーの影響を受けないなどと考える企業は、衰退する危険に晒されていることに気が付かなければなりません。
analyticsjapan Oct 22, 2019 0 3018
AIは、1956年に学問分野として設立されました。それ以来、AI技術はテクノロジー業界の重要な部分となっています。米国、中国、日本、韓国、インドなど、世界のさまざまな地域でさまざまな種類のAI駆動ロボットが開発されています。報告によると、AIへの世界的な投資の3分の2が中国に注がれました。これにより、昨年だけでAI産業が67%成長し、中国は2016年に科学技術大学でJia...
analyticsjapan Dec 12, 2019 0 2989
保険業界は常に非常に保守的です。ただし、新しい技術の採用は単なる現代のトレンドではなく、競争のペースを維持するために必要なものです。現代のデジタル時代では、ビッグデータテクノロジーは膨大な量の情報を処理し、ワークフローの効率を高め、運用コス
analyticsjapan Oct 1, 2019 0 2847
ビッグデータと分析のアプリケーションは、eコマースビジネスがゲームの一歩先を行くのを助けています。ビッグデータは、組織がより大きな利益を得るためにどの製品、価格、広告がトップであるかを決定するために使用できる多数の事実の集まりです。
analyticsjapan Sep 12, 2019 0 2810
消費者は、生活のあらゆる面でパーソナライズされた体験を期待するようになりました。 AIを金融サービスで使用して、顧客をセグメント化し、リテールバンキングのコンバージョンと定着率を高めるパーソナライズされたオファーを推進できます。自動化されたエージェントは、ミレニアル世代を惹きつけるための鍵であり、人と話すことなく顧客が質問に答え、問題を自分で解決するのに役立ちます。不正行為を顧客に自動的に警告し、行動を起こすことで、顧客満足度を高め、解約の可能性を減らすことができます。
analyticsjapan Dec 20, 2019 0 3834
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Jun 3, 2019 0 4344
患者は常にヘルスケアシステムの究極のエンドユーザーです。この記事の他のすべての解決策は、何らかの方法で - 改善された患者アウトカムを提供することに焦点を当てています。それでも、支払人、医療提供者、またはライフサイエンス企業が仲介者として行動することなく、患者に直接アクセスすることを目的とした解決策もあります。
Aino Aug 5, 2019 0 3099
人工知能(AI)は議論の的となっている話題であり、業界の分野を超えて堅実な支持を得ています。このテクノロジーはここ数カ月間トレンドにあり、日々進化しているため、製造、金融、およびジャーナリズムの分野で新しいユースケースが生まれています。最近では、AIは従業員のエンゲージメントを高め、世界中の組織での採用、トレーニング、定着の方法を改善するための効果的なツールと見なされています。