Tag: AI技術
AIは従業員エンゲージメントの将来をどのように形作っているのでしょうか。
人工知能(AI)は議論の的となっている話題であり、業界の分野を超えて堅実な支持を得ています。このテクノロジーはここ数カ月間トレンドにあり、日々進化しているため、製造、金融、およびジャーナリズムの分野で新しいユースケースが生まれています。最近では、AIは従業員のエンゲージメントを高め、世界中の組織での採用、トレーニング、定着の方法を改善するための効果的なツールと見なされています。
Aino Aug 5, 2019 0 2860
人工知能(AI)は議論の的となっている話題であり、業界の分野を超えて堅実な支持を得ています。このテクノロジーはここ数カ月間トレンドにあり、日々進化しているため、製造、金融、およびジャーナリズムの分野で新しいユースケースが生まれています。最近では、AIは従業員のエンゲージメントを高め、世界中の組織での採用、トレーニング、定着の方法を改善するための効果的なツールと見なされています。
analyticsjapan Dec 20, 2019 0 34
analyticsjapan Jul 11, 2019 0 33
Aino Jul 29, 2019 0 32
analyticsjapan Aug 26, 2019 0 30
analyticsjapan Jan 14, 2020 0 28
analyticsjapan Dec 20, 2019 0 120
analyticsjapan Jan 14, 2020 0 116
Aino Jul 29, 2019 0 114
analyticsjapan Jul 11, 2019 0 107
analyticsjapan Jul 12, 2019 0 101
Aino Jul 29, 2019 0 1104
analyticsjapan Mar 9, 2020 0 1080
analyticsjapan Jul 11, 2019 0 1060
analyticsjapan Jul 11, 2019 0 1049
analyticsjapan Dec 20, 2019 0 1032
analyticsjapan May 21, 2024 0 913
analyticsjapan Mar 9, 2020 0 6213
analyticsjapan Feb 17, 2020 0 3348
analyticsjapan Feb 5, 2020 0 3363
analyticsjapan Dec 27, 2019 0 2016
ビッグデータは、すべての業界および組織部門、特に人事(HR)業界のゲームチェンジャーとして浮上しています。ビッグデータとHRデータ分析を活用すると、採用、トレーニング、開発、パフォーマンス、報酬など、HRのほぼすべての分野に情報を提供し、改善することができます。ビッグデータを使用することで、HRマネージャーはより賢明な決定を下し、組織がより効率的に目標を達成できるように支援できます。
analyticsjapan Jan 24, 2020 0 3377
金融、保険、サプライチェーン、ヘルスケアなど、業界の特定のユースケース向けに独自のブロックチェーン設計を持つことが基本です。バイオメディカルおよびヘルスケアアプリケーションの大半は、プライベートネットワーク上で開発されたブロックチェーンフレームワークが最も受け入れられる参加者として、利害関係者を必要とします。参加のための暗号通貨のようなものでは、それらは推進力を必要としません。いくつかは、ハイパーレジャー、イーサリアムで人気のあるプライベートブロックチェーンの成果です。
Aino Aug 5, 2019 0 2860
人工知能(AI)は議論の的となっている話題であり、業界の分野を超えて堅実な支持を得ています。このテクノロジーはここ数カ月間トレンドにあり、日々進化しているため、製造、金融、およびジャーナリズムの分野で新しいユースケースが生まれています。最近では、AIは従業員のエンゲージメントを高め、世界中の組織での採用、トレーニング、定着の方法を改善するための効果的なツールと見なされています。
analyticsjapan Jun 3, 2019 0 3654
ライフサイエンス企業は常にデータ企業です。 NovartisのGlobal Drug Development内のPredictive Analytics&Designグループのルカ・フィネリ博士は、次のように述べています。「現実には、私たちはデータ会社です。...
analyticsjapan Aug 8, 2019 0 3203
すべての組織は現在、よりデータ駆動型の試みを行っています。機械学習の手法は、この取り組みに役立ちました。私は、世の中の多くの資料が技術的すぎて理解しにくいことを知っています。この一連の記事では、私の目的はデータサイエンスを簡素化することです。私はスタンフォードの講座、本から手がかりを得ています。この試みは、誰にとってもデータサイエンスを理解しやすくすることです。
analyticsjapan Aug 27, 2019 0 3279
慢性疾患と心臓病、脳卒中、がん、2型糖尿病、肥満、関節炎などの慢性疾患は、すべての健康問題の中で最も一般的で、費用がかかり、予防可能なものです。 慢性疾患の発生率の増加に加えて、65歳以上の保健計画対象の人数が増えており、統計的に慢性疾患のリスクが高くなっています。
analyticsjapan Oct 21, 2019 0 2681
ヒューマンバイアスの削減:AIは、人間の直感や知覚ではなくデータに依存しているため、人間の視点が歪曲されて意思決定プロセスが阻害される可能性がなくなります。これにより、組織を差別訴訟から保護することができますが、よりまとまりのある、コミュニケーションのとれる職場を作り出すこともできます。
analyticsjapan Dec 20, 2019 0 3521
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Sep 5, 2019 0 4909
人工知能についてはロボットの恐ろしい報告から、テクノロジーに対する想像以上の期待にまで及んでいます。現在、消費者はスマートフォン、カスタマーサービスセンター、ウェブサイト、アプライアンスを通じて人工知能に絶えず触れる機会があります。調査によると、人々の80%がAIが自分の生活に良い影響をもたらしていると報告しています。テクノロジー、映画、芸術、および文学の圧倒的な前向きな支持にも関わらず、何故恐ろしく思われているのでしょうか。それでは、どれだけ現実に基づいているのでしょうか?これらの質問に答えるためには、事実を確認することが重要です。...