Tag: 目標
機械学習のワークフロー
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Dec 20, 2019 0 598
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Mar 9, 2020 0 28
Aino Aug 16, 2019 0 24
analyticsjapan Sep 5, 2019 0 21
analyticsjapan Aug 19, 2019 0 20
analyticsjapan Oct 18, 2019 0 18
analyticsjapan Mar 9, 2020 0 98
analyticsjapan Sep 5, 2019 0 88
Aino Aug 16, 2019 0 85
analyticsjapan Aug 19, 2019 0 75
analyticsjapan Jul 11, 2019 0 59
analyticsjapan Mar 9, 2020 0 1582
analyticsjapan Sep 5, 2019 0 1248
Aino Aug 16, 2019 0 1215
analyticsjapan Dec 20, 2019 0 1043
analyticsjapan Jul 11, 2019 0 869
analyticsjapan Feb 17, 2020 0 520
analyticsjapan Feb 5, 2020 0 481
analyticsjapan Feb 5, 2020 0 635
analyticsjapan Jan 24, 2020 0 596
analyticsjapan Aug 26, 2019 0 726
AIは企業にとっては流行語ですが、多くの組織はデータドリブン型になるためのデジタルトランスフォーメーションを未だに苦労しています。
analyticsjapan Sep 12, 2019 0 923
消費者は、生活のあらゆる面でパーソナライズされた体験を期待するようになりました。 AIを金融サービスで使用して、顧客をセグメント化し、リテールバンキングのコンバージョンと定着率を高めるパーソナライズされたオファーを推進できます。自動化されたエージェントは、ミレニアル世代を惹きつけるための鍵であり、人と話すことなく顧客が質問に答え、問題を自分で解決するのに役立ちます。不正行為を顧客に自動的に警告し、行動を起こすことで、顧客満足度を高め、解約の可能性を減らすことができます。
analyticsjapan Jun 3, 2019 0 1051
まだ初期の段階にありましたが、プロバイダー分析は過去10年間で電子カルテ(EHR)の大量採用に伴って始まりました。プロバイダ分析ソリューションは、2つの大きなバケツに分類されます.
analyticsjapan Jul 11, 2019 0 718
15兆ドル規模の商業用不動産業界の意思決定者は、不十分なデータに基づいて巨大な決定を下すことを余儀なくされています。調査は高価で、しかし時間がかかります。他のデータソースには偏りがあり制限されているため、専門家は数千万ドル以上の価値のある選択肢に気付かずにいます。
Aino Jul 19, 2019 0 1060
需要と製薬の研究開発投資の両方によって、日本で最も重要な製薬療法分野は何だと思いますか?
analyticsjapan Jan 14, 2020 0 540
以下は、2020年にモバイルヘルスアプリ業界に大きな影響を与え、患者のエクスペリエンスとエンゲージメントの向上に役立ついくつかの世界的な傾向を示しています。テクノロジーは、患者と顧客のヘルスケア業界の改善にのみ役立つことは間違いありません。いくつかのグローバルテクノロジーの助けを借りて、患者固有の骨、臓器、血管のレプリカの作成から絶えず変化し進歩しています。
analyticsjapan Dec 20, 2019 0 598
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
Aino Jul 29, 2019 0 721
顧客維持は、ほとんどのSaaS企業またはサブスクリプション事業が直面している重要な課題の1つです。
analyticsjapan Dec 12, 2019 0 634
保険業界は常に非常に保守的です。ただし、新しい技術の採用は単なる現代のトレンドではなく、競争のペースを維持するために必要なものです。現代のデジタル時代では、ビッグデータテクノロジーは膨大な量の情報を処理し、ワークフローの効率を高め、運用コス
analyticsjapan Jun 3, 2019 0 796
ライフサイエンス企業は常にデータ企業です。 NovartisのGlobal Drug Development内のPredictive Analytics&Designグループのルカ・フィネリ博士は、次のように述べています。「現実には、私たちはデータ会社です。...