analyticsjapan Nov 22, 2019 0 2755
人工知能の定義は「知的エージェントの研究と設計」であり、知的エージェントはその環境を認識し、成功の可能性を最大化する行動システムです。
analyticsjapan Aug 27, 2019 0 33
analyticsjapan Nov 22, 2019 0 31
Aino Aug 5, 2019 0 31
analyticsjapan Feb 5, 2020 0 30
analyticsjapan Oct 21, 2019 0 29
analyticsjapan Dec 20, 2019 0 133
analyticsjapan Oct 21, 2019 0 124
analyticsjapan Jul 11, 2019 0 117
analyticsjapan Nov 22, 2019 0 112
analyticsjapan Mar 9, 2020 0 108
analyticsjapan Jan 14, 2020 0 1328
analyticsjapan Jul 11, 2019 0 1309
analyticsjapan Dec 20, 2019 0 1244
Aino Jul 29, 2019 0 1240
analyticsjapan Mar 9, 2020 0 1224
analyticsjapan May 21, 2024 0 1230
analyticsjapan Mar 9, 2020 0 6762
analyticsjapan Feb 17, 2020 0 3698
analyticsjapan Feb 5, 2020 0 3681
analyticsjapan Jun 3, 2019 0 4437
患者は常にヘルスケアシステムの究極のエンドユーザーです。この記事の他のすべての解決策は、何らかの方法で - 改善された患者アウトカムを提供することに焦点を当てています。それでも、支払人、医療提供者、またはライフサイエンス企業が仲介者として行動することなく、患者に直接アクセスすることを目的とした解決策もあります。
Aino Aug 5, 2019 0 3284
人工知能(AI)は議論の的となっている話題であり、業界の分野を超えて堅実な支持を得ています。このテクノロジーはここ数カ月間トレンドにあり、日々進化しているため、製造、金融、およびジャーナリズムの分野で新しいユースケースが生まれています。最近では、AIは従業員のエンゲージメントを高め、世界中の組織での採用、トレーニング、定着の方法を改善するための効果的なツールと見なされています。
analyticsjapan Sep 12, 2019 0 2959
消費者は、生活のあらゆる面でパーソナライズされた体験を期待するようになりました。 AIを金融サービスで使用して、顧客をセグメント化し、リテールバンキングのコンバージョンと定着率を高めるパーソナライズされたオファーを推進できます。自動化されたエージェントは、ミレニアル世代を惹きつけるための鍵であり、人と話すことなく顧客が質問に答え、問題を自分で解決するのに役立ちます。不正行為を顧客に自動的に警告し、行動を起こすことで、顧客満足度を高め、解約の可能性を減らすことができます。
analyticsjapan Jun 3, 2019 0 4291
保険数理科学が現代の金融理論と現在広く「データ科学」と呼んでいるものの両方に先んじて、データは常に支払人のビジネスモデルの中核をなしてきました。しかし医療では、支払人が直面する質問のセットは他のものよりも広いです分析が主に損失の可能性、損失のコスト、および価格競争力があるが有益な保険料に焦点を当てている保険会社の種類。今日では、有力支払者は保険会社と保険加入者の両方を対象にしており、データ分析は健康への影響に影響を与える能力の不可欠な要素です。
analyticsjapan Aug 26, 2019 0 3025
AIは企業にとっては流行語ですが、多くの組織はデータドリブン型になるためのデジタルトランスフォーメーションを未だに苦労しています。
analyticsjapan Jan 14, 2020 0 3345
以下は、2020年にモバイルヘルスアプリ業界に大きな影響を与え、患者のエクスペリエンスとエンゲージメントの向上に役立ついくつかの世界的な傾向を示しています。テクノロジーは、患者と顧客のヘルスケア業界の改善にのみ役立つことは間違いありません。いくつかのグローバルテクノロジーの助けを借りて、患者固有の骨、臓器、血管のレプリカの作成から絶えず変化し進歩しています。
analyticsjapan Jul 11, 2019 0 4303
ビッグデータはここ数年の間ずっと話題になってきましたが、今日それは実際に使用されているでしょうか。 ビッグデータを適用するための道のりは、かなりの準備段階が必要で手を出せないテクノロジーのように思われますが、適切なツール、チーム、戦略があれば、ビッグデータを活用して市場競争の優位性を目指すことが可能です。...
analyticsjapan Dec 20, 2019 0 4062
本番環境での機械学習は5つのフェーズで行われます。 (業界のチームや企業間で標準化されたベストプラクティスはほとんどありません。ほとんどの機械学習システムはアドホックです)。
analyticsjapan Feb 5, 2020 0 3681
近年、大手消費財企業の最高マーケティング責任者は驚異的な成功を収めています。彼らの最高は、消費者の日常生活の中心にブランドを埋め込むというマーケティングの聖杯を達成することによって、見事なブランド構築を開拓し、そのように巨人の評判を築きました。ある意味、それは理解できます。現在、マーケティング担当者にとって厳しい環境です。急速に加速する業界の変化のペースに対応するには、並外れた工夫、革新、洞察が必要です。そのため、CMOが試行され、テストされたマーケティング手法に後退しているのも不思議ではありません。実際、CMOの4人に3人は、戦略的なマーケティング目標を達成するための一番の方法は、過去に機能したソリューションを再適用することだと言います。
Aino Jul 29, 2019 0 4041
顧客維持は、ほとんどのSaaS企業またはサブスクリプション事業が直面している重要な課題の1つです。